Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 130(9): 1453-1462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429437

RESUMO

BACKGROUND: FOXL2 is a transcription factor expressed in ovarian granulosa cells. A somatic variant of FOXL2 (c.402 C > G, p.Cys134Trp) is the hallmark of adult-type granulosa cell tumours. METHODS: We generated KGN cell clones either heterozygous for this variant (MUT) or homozygous for the wild-type (WT) allele by CRISPR/Cas9 editing. They underwent RNA-Seq and bioinformatics analyses to uncover pathways impacted by deregulated genes. Cell morphology and migration were studied. RESULTS: The differentially expressed genes (DEGs) between WT/MUT and WT/WT KGN cells (DEGs-WT/MUT), pointed to several dysregulated pathways, like TGF-beta pathway, cell adhesion and migration. Consistently, WT/MUT cells were rounder than WT/WT cells and displayed a different distribution of stress fibres and paxillin staining. A comparison of the DEGs-WT/MUT with those found when FOXL2 was knocked down (KD) in WT/WT KGN cells showed that most DEGs-WT/MUT cells were not so in the KD experiment, supporting a gain-of-function (GOF) scenario. MUT-FOXL2 also displayed a stronger interaction with SMAD3. CONCLUSIONS: Our work, aiming at better understanding the GOF scenario, shows that the dysregulated genes and pathways are consistent with this idea. Besides, we propose that GOF might result from an enhanced interaction with SMAD3 that could underlie an ectopic capacity of mutated FOXL2 to bind SMAD4.


Assuntos
Proteína Forkhead Box L2 , Tumor de Células da Granulosa , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Humanos , Feminino , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Sistemas CRISPR-Cas , Regulação Neoplásica da Expressão Gênica
2.
FASEB J ; 35(4): e21355, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749886

RESUMO

FOXL2 and ESR2 are key transcriptional regulators in ovarian granulosa cells. To explore their transcriptional roles and their interplay, we have depleted Foxl2 and Esr2 in mouse primary granulosa cells to assess their ability to bind their targets and/or to modulate gene expression and cellular functions. We show that FOXL2 is involved in a large number of regulatory actions essential for the maintenance of granulosa cell fate. A parallel ChIP-seq analysis showed that FOXL2 mainly binds to sites located in intergenic regions quite far from its targets. A bioinformatic analysis demonstrated that FOXL2-activated genes were enriched in peaks associated with the H3K27ac mark, whereas FOXL2-repressed genes were not, suggesting that FOXL2 can activate transcription through binding to enhancer sites. We also identified about 500 deregulated genes upon Esr2 silencing, of which one third are also targets of FOXL2. We provide evidence showing that both factors modulate, through a coherent feed-forward loop, a number of common targets. Many of the FOXL2/ESR2 targets are involved in cell motility and, consistently, granulosa cells depleted for either Foxl2 or Esr2 exhibit decreased migration, invasion and adhesion. This effect is paralleled by the depletion of their target Phactr1, involved in actin cytoskeleton dynamics. Our analysis expands the number of direct and indirect transcriptional targets of both FOXL2 and ESR2, which deserve investigation in the context of adult-type granulosa cell tumors whose molecular diagnostic hallmark is the presence of the C134W FOXL2 pathogenic variant.


Assuntos
Receptor beta de Estrogênio/metabolismo , Proteína Forkhead Box L2/metabolismo , Células da Granulosa/fisiologia , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Receptor beta de Estrogênio/genética , Feminino , Proteína Forkhead Box L2/genética , Edição de Genes , Camundongos
3.
Hum Genet ; 139(11): 1455-1470, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32504121

RESUMO

In humans, pathogenic variants in the DHH gene underlie cases of 46,XY gonadal dysgenesis. DHH is part of the Hedgehog family of proteins, which require extensive processing, including self-cleavage of the precursor for efficient signalling. In our work, we have assessed the effect of several human DHH pathogenic variants involved in recessive complete or partial gonadal dysgenesis, on protein processing and sub-cellular localization. We found that a subset of variants was unable to perform self-cleavage, which correlated albeit not perfectly with an altered subcellular localization of the resulting proteins. For the processing-proficient variants, we used structural modelling tools and molecular dynamic (MD) simulations to predict the potential impact of the variants on protein conformation and/or interaction with partners. Our study contributes to a better understanding of the molecular mechanisms involved in DHH dysfunction leading to 46,XY disorders of sex development.


Assuntos
Predisposição Genética para Doença/genética , Disgenesia Gonadal 46 XY/genética , Proteínas Hedgehog/genética , Mutação/genética , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Masculino , Simulação de Dinâmica Molecular , Conformação Proteica , Proteólise
4.
EBioMedicine ; 42: 524-531, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31000419

RESUMO

BACKGROUND: Primary Ovarian Insufficiency (POI), a major cause of infertility, affects about 1-3% of women under forty years of age. Although there is a growing list of causal genetic alterations, POI remains mostly idiopathic. METHODS: We performed exome sequencing (WES) of two sisters affected with POI, one unaffected sister and their mother from a consanguineous family. We assessed the impact of the identified MEIOB variant with a minigene assay and by sequencing illegitimate transcripts from the proband's leukocytes. We studied its functional impact on the interaction between MEIOB with its partner SPATA22 and their localization to DNA double-strand breaks (DSB). FINDINGS: We identified a homozygous variant in the last base of exon 12 of MEIOB, which encodes a factor essential for meiotic recombination. This variant was predicted to strongly affect MEIOB pre-mRNA splicing. Consistently, a minigene assay showed that the variant induced exon 12 skipping, which was confirmed in vivo in the proband's leukocytes. Aberrant splicing leads to the production of a C-terminally truncated protein that cannot interact with SPATA22, abolishing their recruitment to DSBs. INTERPRETATION: This truncating MEIOB variant is expected to provoke meiotic defects and a depleted follicular stock, as in Meiob-/- mice. This is the first molecular defect reported in a meiosis-specific single-stranded DNA-binding protein (SSB) responsible for POI. We hypothesise that alterations in other SSB proteins could explain cases of syndromic or isolated ovarian insufficiency. FUND: Université Paris Diderot, Fondation pour la Recherche Médicale, Fondation ARC contre le cancer, Commissariat à l'Energie Atomique and Institut Universitaire de France.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Insuficiência Ovariana Primária/etiologia , Insuficiência Ovariana Primária/metabolismo , Adolescente , Adulto , Animais , Biomarcadores , Linhagem Celular , Consanguinidade , Feminino , Expressão Gênica , Humanos , Informática/métodos , Camundongos , Linhagem , Insuficiência Ovariana Primária/diagnóstico , Ligação Proteica , Sequenciamento do Exoma , Adulto Jovem
5.
Mol Cell Proteomics ; 18(7): 1307-1319, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30992313

RESUMO

The PI3K/AKT signaling pathway is known to regulate a broad range of cellular processes, and it is often altered in several types of cancers. Recently, somatic AKT1 mutations leading to a strong activation of this kinase have been reported in juvenile granulosa cell tumors. However, the molecular role of AKT1 in the supporting cell lineage of the ovary is still poorly understood. To get insights into its function in such cells, we depleted Akt1 in murine primary granulosa cells and assessed the molecular consequences at both the transcript and protein levels. We were able to corroborate the involvement of AKT1 in the regulation of metabolism, apoptosis, cell cycle, or cytoskeleton dynamics in this ovarian cell type. Consistently, we showed in established granulosa cells that depletion of Akt1 provoked altered directional persistent migration and increased its velocity. This study also allowed us to put forward new direct and indirect targets of the kinase. Indeed, a series of proteins involved in intracellular transport and mitochondrial physiology were significantly affected by Akt1 depletion. Using in silico analyses, we also propose a set of kinases and transcription factors that can mediate the action of AKT1 on the deregulated transcripts and proteins. Taken altogether, our results provide a resource of direct and indirect AKT1 targets in granulosa cells and may help understand its roles in this ovarian cell type.


Assuntos
Células da Granulosa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Movimento Celular , Feminino , Regulação da Expressão Gênica , Genoma , Camundongos , Peptídeos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
6.
Elife ; 62017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29231814

RESUMO

Primary Ovarian Insufficiency (POI) affects ~1% of women under forty. Exome sequencing of two Finnish sisters with non-syndromic POI revealed a homozygous mutation in FANCM, leading to a truncated protein (p.Gln1701*). FANCM is a DNA-damage response gene whose heterozygous mutations predispose to breast cancer. Compared to the mother's cells, the patients' lymphocytes displayed higher levels of basal and mitomycin C (MMC)-induced chromosomal abnormalities. Their lymphoblasts were hypersensitive to MMC and MMC-induced monoubiquitination of FANCD2 was impaired. Genetic complementation of patient's cells with wild-type FANCM improved their resistance to MMC re-establishing FANCD2 monoubiquitination. FANCM was more strongly expressed in human fetal germ cells than in somatic cells. FANCM protein was preferentially expressed along the chromosomes in pachytene cells, which undergo meiotic recombination. This mutation may provoke meiotic defects leading to a depleted follicular stock, as in Fancm-/- mice. Our findings document the first Mendelian phenotype due to a biallelic FANCM mutation.


Assuntos
DNA Helicases/genética , Homozigoto , Mutação , Ovário/fisiopatologia , Insuficiência Ovariana Primária/genética , Adulto , Aberrações Cromossômicas , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Feminino , Predisposição Genética para Doença , Genótipo , Recombinação Homóloga , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Insuficiência Ovariana Primária/patologia , Ubiquitinação , Sequenciamento do Exoma , Adulto Jovem
7.
Clin Endocrinol (Oxf) ; 87(5): 539-544, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28708305

RESUMO

OBJECTIVE: Disorders of sex development (DSD) are a heterogeneous group of conditions affecting the differentiation and development of the internal and external genitalia. Here, we aimed at identifying the genetic cause of DSD in two 46,XY sisters from a consanguineous family. DESIGN: We performed a whole-exome sequencing of two 46,XY female individuals. Sanger sequencing was used to validate the most likely candidate variant, affecting the desert hedgehog (DHH) gene. Molecular dynamics simulations were performed to get insights into the impact of the variant on protein structure and on its interaction with the protein partner BOC (brother of CDO/cell adhesion molecule, downregulated by oncogenes). PATIENTS: The index patient presented with a female phenotype, primary amenorrhoea (low oestradiol and testosterone and high FSH and LH). She also had an apparent absence of intra-abdominal gonads and uterus, facial dysmorphy, psychomotor retardation and neuropathy. Her sister displayed a similar gonadal and endocrinological picture, without dysmorphy or psychomotor retardation. RESULTS: Whole-exome sequencing revealed a homozygous variant in DHH leading to the p.Trp173Cys substitution. The relevant Trp residue is conserved, and its alteration was predicted to be deleterious. Molecular dynamics simulations showed that the mutation increases the conformational flexibility of the protein and potentially alters its interaction with BOC, a positive regulator of Hedgehog signalling. We do not exclude an interference of the mutation with DHH-intein-mediated auto-processing. CONCLUSIONS: This report increases the number of described homozygous DHH variants and highlights the importance of advanced bioinformatic tools to better understand the pathogenicity of human variants.


Assuntos
Transtorno 46,XY do Desenvolvimento Sexual/genética , Proteínas Hedgehog/genética , Adulto , Substituição de Aminoácidos , Saúde da Família , Feminino , Variação Genética , Homozigoto , Humanos , Simulação de Dinâmica Molecular , Linhagem , Conformação Proteica , Irmãos , Sequenciamento do Exoma
8.
Eur J Endocrinol ; 176(5): K9-K14, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28348023

RESUMO

CONTEXT: PCOS is a heterogeneous condition characterized by hyperandrogenism and chronic anovulation and affects about 10% of women. Its etiology is poorly known, but a dysregulation of gonadotropin secretion is one of its hallmarks. OBJECTIVE: As the etiology of PCOS is unclear, we have performed a genome-wide analysis of a consanguineous family with three sisters diagnosed with PCOS. METHODS: Whole-exome sequencing and Sanger sequencing confirmation. RESULTS: Whole-exome sequencing allowed the detection of the missense variant rs104893836 located in the first coding exon of the GNRHR gene and leading to the p.Gln106Arg (p.Q106R) substitution. Sanger sequencing of all available individuals of the family confirmed that the variant was homozygous in the three affected sisters and heterozygous in both parents. CONCLUSIONS: This is the first description of a GNRHR gene mutation in patients diagnosed with PCOS. Although we do not exclude a possible interaction of the identified variant with the genetic background and/or the environment, our result suggests that genetic alterations in the hypothalamo-pituitary axis may play role in the pathogenesis of PCOS.


Assuntos
Consanguinidade , Homozigoto , Mutação , Síndrome do Ovário Policístico/genética , Receptores LHRH/genética , Feminino , Hormônio Foliculoestimulante/sangue , Humanos , Israel , Hormônio Luteinizante/sangue , Linhagem , Arábia Saudita/etnologia , Análise de Sequência de DNA
9.
Hum Mol Genet ; 24(23): 6687-98, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26362254

RESUMO

Juvenile granulosa cell tumors (JGCTs) of the ovary are pediatric neoplasms representing 5% of all granulosa cell tumors (GCTs). Most GCTs are of adult type (AGCTs) and bear a mutation in the FOXL2 gene. The molecular basis of JGCTs is poorly understood, although mutations in the GNAS gene have been reported. We have detected in-frame duplications within the oncogene AKT1 in >60% of the JGCTs studied. Here, to evaluate the functional impact of these duplications and the existence of potential co-driver alterations, we have sequenced the transcriptome of four JGCTs and compared them with control transcriptomes. A search for gene variants detected only private alterations probably unrelated with tumorigenesis, suggesting that tandem duplications are the best candidates to underlie tumor formation in the absence of GNAS alterations. We previously showed that the duplications were specific to JGCTs. However, the screening of eight AGCTs samples without FOXL2 mutation showed the existence of an AKT1 duplication in one case, also having a stromal luteoma. The analysis of RNA-Seq data pinpointed a series of differentially expressed genes, involved in cytokine and hormone signaling and cell division-related processes. Further analyses pointed to the existence of a possible dedifferentiation process and suggested that most of the transcriptomic dysregulation might be mediated by a limited set of transcription factors perturbed by AKT1 activation. Finally, we show that commercially available AKT inhibitors can modulate the in vitro activity of various mutated forms. These results shed light on the pathogenesis of JGCTs and provide therapeutic leads for a targeted treatment.


Assuntos
Tumor de Células da Granulosa/genética , Mutação , Neoplasias Ovarianas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Adolescente , Divisão Celular/genética , Criança , Pré-Escolar , Citocinas , Análise Mutacional de DNA , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Tumor de Células da Granulosa/metabolismo , Hormônios , Humanos , Lactente , Recém-Nascido , Neoplasias Ovarianas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/genética
10.
EBioMedicine ; 2(5): 421-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26137586

RESUMO

BACKGROUND: Ovarian granulosa cell tumors are the most common sex-cord stromal tumors and have juvenile (JGCTs) and adult forms. In a previous study we reported the occurrence of activating somatic mutations of Gαs, which transduces mitogenic signals, in 30% of the analyzed JGCTs. METHODS: We have searched for alterations in other proteins involved in ovarian mitogenic signaling. We focused on the PI3K-AKT axis. As we found mutations in AKT1, we analyzed the subcellular localization of the mutated proteins and performed functional explorations using Western-blot and luciferase assays. FINDINGS: We detected in-frame duplications affecting the pleckstrin-homology domain of AKT1 in more than 60% of the tumors occurring in girls under 15 years of age. The somatic status of the mutations was confirmed when peritumoral DNA was available. The JGCTs without duplications carried point mutations affecting highly conserved residues. Several of these substitutions were somatic lesions. The mutated proteins carrying the duplications had a non-wild-type subcellular distribution, with a marked enrichment at the plasma membrane. This led to a striking degree of AKT1 activation demonstrated by a strong phosphorylation level and by reporter assays. INTERPRETATION: Our study incriminates somatic mutations of AKT1 as a major event in the pathogenesis of JGCTs. The existence of AKT inhibitors currently tested in clinical trials opens new perspectives for targeted therapies for these tumors, which are currently treated with standard non-specific chemotherapy protocols.


Assuntos
Duplicação Gênica/genética , Tumor de Células da Granulosa/enzimologia , Tumor de Células da Granulosa/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fases de Leitura/genética , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Criança , Pré-Escolar , Ativação Enzimática/genética , Feminino , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Fosforilação , Mutação Puntual/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/química , Frações Subcelulares/metabolismo
11.
Elife ; 32014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25369636

RESUMO

FOXL2 is a lineage determining transcription factor in the ovary, but its direct targets and modes of action are not fully characterized. In this study, we explore the targets of FOXL2 and five nuclear receptors in murine primary follicular cells. We found that FOXL2 is required for normal gene regulation by steroid receptors, and we show that estrogen receptor beta (ESR2) is the main vector of estradiol signaling in these cells. Moreover, we found that FOXL2 directly modulates Esr2 expression through a newly identified intronic element. Interestingly, we found that FOXL2 repressed the testis-determining gene Sox9 both independently of estrogen signaling and through the activation of ESR2 expression. Altogether, we show that FOXL2 mobilizes estrogen signaling to establish a coherent feed-forward loop repressing Sox9. This sheds a new light on the role of FOXL2 in ovarian maintenance and function.


Assuntos
Estrogênios/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Estradiol/farmacologia , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Feminino , Proteína Forkhead Box L2 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Genoma , Células da Granulosa/efeitos dos fármacos , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...